Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
BMC Plant Biol ; 24(1): 383, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724888

RESUMEN

Taxus chinensis (Taxus cuspidata Sieb. et Zucc.) is a traditional medicinal plant known for its anticancer substance paclitaxel, and its growth age is also an important factor affecting its medicinal value. However, how age affects the physiological and metabolic characteristics and active substances of T. chinensis is still unclear. In this study, carbon and nitrogen accumulation, contents of active substances and changes in primary metabolites in barks and annual leaves of T. chinensis of different diameter classes were investigated by using diameter classes instead of age. The results showed that leaves and barks of small diameter class (D1) had higher content of non-structural carbohydrates and C, which were effective in enhancing defense capacity, while N content was higher in medium (D2) and large diameter classes (D3). Active substances such as paclitaxel, baccatin III and cephalomannine also accumulated significantly in barks of large diameter classes. Moreover, 21 and 25 differential metabolites were identified in leaves and barks of different diameter classes, respectively. The differential metabolites were enhanced the TCA cycle and amino acid biosynthesis, accumulate metabolites such as organic acids, and promote the synthesis and accumulation of active substances such as paclitaxel in the medium and large diameter classes. These results revealed the carbon and nitrogen allocation mechanism of different diameter classes of T. chinensis, and its relationship with medicinal components, providing a guidance for the harvesting and utilization of wild T. chinensis.


Asunto(s)
Carbono , Metabolómica , Nitrógeno , Hojas de la Planta , Taxus , Taxus/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Hojas de la Planta/metabolismo , Corteza de la Planta/metabolismo , Corteza de la Planta/química
2.
Plant Biotechnol J ; 22(1): 233-247, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37772738

RESUMEN

Paclitaxel is one of the most effective anticancer drugs ever developed. Although the most sustainable approach to its production is provided by plant cell cultures, the yield is limited by bottleneck enzymes in the taxane biosynthetic pathway: baccatin-aminophenylpropanoyl-13-O-transferase (BAPT) and 3'-N-debenzoyltaxol N-benzoyltransferase (DBTNBT). With the aim of enhancing paclitaxel production by overcoming this bottleneck, we obtained distinct lines of Taxus baccata in vitro roots, each independently overexpressing either of the two flux-limiting genes, BAPT or DBTNBT, through a Rhizobium rhizogenes A4-mediated transformation. Due to the slow growth rate of the transgenic Taxus roots, they were dedifferentiated to obtain callus lines and establish cell suspensions. The transgenic cells were cultured in a two-stage system and stimulated for taxane production by a dual elicitation treatment with 1 µm coronatine plus 50 mm of randomly methylated-ß-cyclodextrins. A high overexpression of BAPT (59.72-fold higher at 48 h) and DBTNBT (61.93-fold higher at 72 h) genes was observed in the transgenic cell cultures, as well as an improved taxane production. Compared to the wild type line (71.01 mg/L), the DBTNBT line produced more than four times higher amounts of paclitaxel (310 mg/L), while the content of this taxane was almost doubled in the BAPT line (135 mg/L). A transcriptional profiling of taxane biosynthetic genes revealed that GGPPS, TXS and DBAT genes were the most reactive to DBTNBT overexpression and the dual elicitation, their expression increasing gradually and constantly. The same genes exhibited a pattern of isolated peaks of expression in the elicited BAPT-overexpressing line.


Asunto(s)
Paclitaxel , Taxus , Paclitaxel/metabolismo , Taxus/genética , Taxus/metabolismo , Células Cultivadas , Taxoides/farmacología , Taxoides/metabolismo
3.
J Am Chem Soc ; 146(1): 801-810, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38129385

RESUMEN

Taxol is a potent drug used in various cancer treatments. Its complex structure has prompted extensive research into its biosynthesis. However, certain critical steps, such as the formation of the oxetane ring, which is essential for its activity, have remained unclear. Previous proposals suggested that oxetane formation follows the acetylation of taxadien-5α-ol. Here, we proposed that the oxetane ring is formed by cytochrome P450-mediated oxidation events that occur prior to C5 acetylation. To test this hypothesis, we analyzed the genomic and transcriptomic information for Taxus species to identify cytochrome P450 candidates and employed two independent systems, yeast (Saccharomyces cerevisiae) and plant (Nicotiana benthamiana), for their characterization. We revealed that a single enzyme, CYP725A4, catalyzes two successive epoxidation events, leading to the formation of the oxetane ring. We further showed that both taxa-4(5)-11(12)-diene (endotaxadiene) and taxa-4(20)-11(12)-diene (exotaxadiene) are precursors to the key intermediate, taxologenic oxetane, indicating the potential existence of multiple routes in the Taxol pathway. Thus, we unveiled a long-elusive step in Taxol biosynthesis.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Taxus , Sistema Enzimático del Citocromo P-450/metabolismo , Paclitaxel/metabolismo , Éteres Cíclicos , Catálisis , Taxus/genética , Taxus/metabolismo
4.
Int J Biol Macromol ; 248: 125909, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482165

RESUMEN

Taxol, a valuable but rare secondary metabolite of the genus Taxus, is an effective anticancer drug. Understanding the regulation of taxol biosynthesis may provide a means to increase taxol content. The microRNA miR5298b was found to promote the accumulation of taxol and upregulate several taxol biosynthesis genes, including DBAT, TASY, and T5H, as demonstrated by experiments using the overexpression and mimicry of transient leaves. Moreover, miR5298b cleaves the mRNA sequence of TcNPR3, a homolog of the salicylic acid receptor AtNPR3/4. Overexpression and knockdown by RNA interference of TcNPR3 confirmed that it repressed taxol biosynthesis. These results indicate that miR5298b enhances taxol biosynthesis via the cleavage of TcNPR3. Yeast two-hybrid bimolecular fluorescence complementation and pull-down assays revealed that TcTGA6, a TGA transcription factor, physically interacted with TcNPR3. Functional experiments showed that TcTGA6 negatively regulates taxol biosynthesis by directly combining with the TGACG motif in the promoters of TASY, T5H, and T10H. TcNPR3 enhances TcTGA6 inhibition Luciferase assays showed that miR5298b alleviated the repression of the TcNPR3-TcTGA6 complex. In summary, miR5298b can cleave TcNPR3, thereby alleviating the inhibition of the TcNPR3-TcTGA6 complex to upregulate taxol biosynthesis genes.


Asunto(s)
MicroARNs , Taxus , Taxus/genética , Taxus/metabolismo , Factores de Transcripción/genética , Paclitaxel/metabolismo , Regiones Promotoras Genéticas/genética , MicroARNs/genética , MicroARNs/metabolismo
5.
Plant Sci ; 334: 111776, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37343603

RESUMEN

Novel approaches to optimize the production of plant specialized metabolites are crucial to reach maximum productivity of plant biofactories. Plant polyploidization frequently enhances protein synthesis and thereby increases the biosynthesis of specialized metabolites. Paclitaxel is a valuable anticancer agent scarcely produced in nature. Therefore, plant biofactories represent a sustainable alternative source of this compound and related taxanes. With the aim of improving the productivity of Taxus spp. cell cultures, we induced polyploidy in vitro by treating immature embryos of Taxus baccata with colchicine. To obtain the polyploid cell lines, calli were induced from T. baccata plantlets previously treated with colchicine and ploidy levels were accurately identified using flow cytometry. In terms of cell morphology, tetraploid cells were about 3-fold bigger than the diploid cells. The expression of taxane pathway genes was higher in the tetraploid cell line compared to the diploid cells. Moreover, taxane production was 6.2-fold higher and the production peak was achieved 8 days earlier than in the diploid cell line, indicating a higher productivity. The obtained tetraploid cell line proved to be highly productive, constituting a step forward towards the development of a bio-sustainable production system for this chemotherapeutic drug.


Asunto(s)
Taxus , Taxus/genética , Taxus/metabolismo , Tetraploidía , Taxoides/farmacología , Taxoides/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Colchicina/farmacología , Colchicina/metabolismo
6.
BMC Plant Biol ; 23(1): 285, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248487

RESUMEN

BACKGROUND: Taxaceae, is a class of dioecious and evergreen plant with substantial economic and ecology value. At present many phytochemical analyses have been performed in Taxus plants. And various biological constituents have been isolated from various Taxus species. However, the difference of compounds and antioxidant capacity of different tissues of T. media is not clear. RESULTS: In the present study, we investigated the metabolites and antioxidant activity of four tissues of T. media, including T. media bark (TB), T. media fresh leaves (TFL), T. media seeds (TS), T. media aril (TA). In total, 808 compounds, covering 11 subclasses, were identified by using UPLC-MS/MS. Paclitaxel, the most popular anticancer compound, was found to accumulate most in TS, followed by TB, TFL and TA in order. Further analysis found that 70 key differential metabolites with VIP > 1.0 and p < 0.05, covering 8 subclasses, were screened as the key differential metabolites in four tissues. The characteristic compounds of TFL mainly included flavonoids and tanninsis. Alkaloids and phenolic acids were major characteristic compounds of TS and TB respectively. Amino acids and derivatives, organic acids, saccharides and lipids were the major characteristic compounds of TA. Additionally, based on FRAP and ABTS method, TS and TFL exhibited higher antioxidant activity than TB and TA. CONCLUSION: There was significant difference in metabolite content among different tissues of T. media. TFL and TS had higher metabolites and antioxidant capacity than other tissues, indicating that TFL and TS were more suitable for the development and utilization of T. media in foods and drinks.


Asunto(s)
Antioxidantes , Taxus , Antioxidantes/metabolismo , Taxus/metabolismo , Extractos Vegetales/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem , Metabolómica/métodos , Flavonoides/metabolismo
7.
Plant Commun ; 4(5): 100630, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37231648

RESUMEN

Taxus leaves provide the raw industrial materials for taxol, a natural antineoplastic drug widely used in the treatment of various cancers. However, the precise distribution, biosynthesis, and transcriptional regulation of taxoids and other active components in Taxus leaves remain unknown. Matrix-assisted laser desorption/ionization-mass spectrometry imaging analysis was used to visualize various secondary metabolites in leaf sections of Taxus mairei, confirming the tissue-specific accumulation of different active metabolites. Single-cell sequencing was used to produce expression profiles of 8846 cells, with a median of 2352 genes per cell. Based on a series of cluster-specific markers, cells were grouped into 15 clusters, suggesting a high degree of cell heterogeneity in T. mairei leaves. Our data were used to create the first Taxus leaf metabolic single-cell atlas and to reveal spatial and temporal expression patterns of several secondary metabolic pathways. According to the cell-type annotation, most taxol biosynthesis genes are expressed mainly in leaf mesophyll cells; phenolic acid and flavonoid biosynthesis genes are highly expressed in leaf epidermal cells (including the stomatal complex and guard cells); and terpenoid and steroid biosynthesis genes are expressed specifically in leaf mesophyll cells. A number of novel and cell-specific transcription factors involved in secondary metabolite biosynthesis were identified, including MYB17, WRKY12, WRKY31, ERF13, GT_2, and bHLH46. Our research establishes the transcriptional landscape of major cell types in T. mairei leaves at a single-cell resolution and provides valuable resources for studying the basic principles of cell-type-specific regulation of secondary metabolism.


Asunto(s)
Taxus , Taxus/genética , Taxus/química , Taxus/metabolismo , Paclitaxel/metabolismo , Taxoides/metabolismo , Espectrometría de Masas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
8.
Plant J ; 115(5): 1243-1260, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37219365

RESUMEN

Taxol, which is a widely used important chemotherapeutic agent, was originally isolated from Taxus stem barks. However, little is known about the precise distribution of taxoids and the transcriptional regulation of taxoid biosynthesis across Taxus stems. Here, we used MALDI-IMS analysis to visualize the taxoid distribution across Taxus mairei stems and single-cell RNA sequencing to generate expression profiles. A single-cell T. mairei stem atlas was created, providing a spatial distribution pattern of Taxus stem cells. Cells were reordered using a main developmental pseudotime trajectory which provided temporal distribution patterns in Taxus stem cells. Most known taxol biosynthesis-related genes were primarily expressed in epidermal, endodermal, and xylem parenchyma cells, which caused an uneven taxoid distribution across T. mairei stems. We developed a single-cell strategy to screen novel transcription factors (TFs) involved in taxol biosynthesis regulation. Several TF genes, such as endodermal cell-specific MYB47 and xylem parenchyma cell-specific NAC2 and bHLH68, were implicated as potential regulators of taxol biosynthesis. Furthermore, an ATP-binding cassette family transporter gene, ABCG2, was proposed as a potential taxoid transporter candidate. In summary, we generated a single-cell Taxus stem metabolic atlas and identified molecular mechanisms underpinning the cell-specific transcriptional regulation of the taxol biosynthesis pathway.


Asunto(s)
Taxoides , Taxus , Taxoides/metabolismo , Transcriptoma , Taxus/genética , Taxus/metabolismo , Paclitaxel , Espectrometría de Masas
9.
Tree Physiol ; 43(6): 1009-1022, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36808461

RESUMEN

The toxicity and stress caused by heavy metal contamination has become an important constraint to the growth and flourishing of trees. In particular, species belonging to the genus Taxus, which are the only natural source for the anti-tumor medicine paclitaxel, are known to be highly sensitive to environmental changes. To investigate the response of Taxus spp. to heavy metal stress, we analyzed the transcriptomic profiles of Taxus media trees exposed to cadmium (Cd2+). In total, six putative genes from the metal tolerance protein (MTP) family were identified in T. media, including two Cd2+ stress inducible TMP genes (TmMTP1, TmMTP11 and Taxus media). Secondary structure analyses predicted that TmMTP1 and TmMTP11, which are members of the Zn-CDF and Mn-CDF subfamily proteins, respectively, contained six and four classic transmembrane domains, respectively. The introduction of TmMTP1/11 into the ∆ycf1 yeast cadmium-sensitive mutant strain showed that TmMTP1/11 might regulate the accumulation of Cd2+ to yeast cells. To screen the upstream regulators, partial promoter sequences of the TmMTP1/11 genes were isolated using the chromosome walking method. Several myeloblastosis (MYB) recognition elements were identified in the promoters of these genes. Furthermore, two Cd2+-induced R2R3-MYB TFs, TmMYB16 and TmMYB123, were identified. Both in vitro and in vivo assays confirmed that TmMTB16/123 play a role in Cd2+ tolerance by activating and repressing the expression of TmMTP1/11 genes. The present study elucidated new regulatory mechanisms underlying the response to Cd stress and can contribute to the breeding of Taxus species with high environmental adaptability.


Asunto(s)
Metales Pesados , Taxus , Cadmio/metabolismo , Taxus/genética , Taxus/metabolismo , Saccharomyces cerevisiae , Metales Pesados/metabolismo , Paclitaxel/metabolismo
10.
Inflammopharmacology ; 31(1): 451-464, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36595125

RESUMEN

The needle powder of Taxus wallichiana is in use for the management of diabetes and inflammation-related complications in the Indian and Chinese Systems of Traditional Medicine but the lack of proper pharmacological intervention has prompted us to investigate the pharmacological mechanism against inflammation-induced insulin resistance in high-fat diet-fed C57BL/6 mice. Hexane (Tw-H), chloroform (Tw-C), and ethyl acetate (Tw-EA) extracts were prepared from a needle of T. wallichiana and its effect on glucose uptake against TNF-α-induced insulin resistance in skeletal muscle cells was studied. Among all, Tw-EA extract has shown promising glucose uptake potential. Tw-EA treatment is also able to decrease the lipid accumulation in adipocytes. Chemical signature of Tw-EA using HPLC showed the presence of taxoids. Efficacy of taxoids-rich extract from T. wallichiana (Tw-EA) was further validated in in vivo system against high-fat diet (HFD)-induced insulin resistance in C57BL/6 mice. Oral treatment of Tw-EA showed significant reduction in blood glucose, pro-inflammatory cytokine production and body weight gain when compared with vehicle-treated HFD-induced insulin resistance in C57BL/6 mice. Histopathology and immunohistochemistry study in skeletal muscle and adipose tissue revealed that oral treatment of Tw-EA is able to reduce the infiltration of inflammatory cells in skeletal muscles, ameliorate the hypertrophy in adipose tissue and upregulate the GLUT4 protein expression. Treatment with Tw-EA significantly up-regulated mRNA expression of insulin signaling pathway (IRS-1, PI3K, AKT, GLUT 4). This study suggested the beneficial effect of taxoids-rich extract from Taxus wallichiana against the inflammation-associated insulin resistance condition.


Asunto(s)
Resistencia a la Insulina , Taxus , Ratones , Animales , Resistencia a la Insulina/fisiología , Dieta Alta en Grasa , Taxus/metabolismo , Taxoides/uso terapéutico , Ratones Endogámicos C57BL , Inflamación/tratamiento farmacológico , Insulina/metabolismo , Glucemia/metabolismo
11.
PeerJ ; 11: e14757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36718441

RESUMEN

In order to understand the adaptative changes of the Japanese yew (Taxus cuspidate L.) to high light conditions, this study investigated gas-exchange, chlorophyll fluorescence, chlorophyll, and the impact of epicuticular wax on the gas-exchange and photoinhibition of Japanese yew seedlings and saplings. The chlorophyll content per unit area and photosynthetic rate in seedling leaves were significantly lower than in sapling leaves. When leaves from seedlings and saplings were exposed to 1,200 µmol·m-2·s-1 photon flux density (PFD) for 2 h, seedling leaves exhibited a greater down-regulation of maximum quantum yield (Fv/Fm) and actual photosystem II efficiency ( Φ PSII). Non-photochemical quenching (NPQ) and high energy quenching (qE) in sapling leaves were much higher than in seedling leaves when both were exposed to 1,200 µmol·m-2·s-1 PFD for 2 h. At a low level of O2, the photorespiration rate (Pr) and the ratio of photorespiration/gross photosynthetic rate (Pr/Pg) in seedling leaves were lower than in sapling leaves when both were exposed to 1,200 µmol·m-2·s-1 PFD, but this difference did not reach statistical significance (P < 0.05). Compared with sapling leaves, seedling leaves exhibited lower levels of xanthophyll pool. Epicuticular wax content on seedling leaves was significantly lower than on sapling leaves. The results of this study showed that wax coverage on the leaf surface decreased the photosynthetic rate in sapling leaves as a consequence of decreased stomatal conductance. Epicuticular wax is related to tree age and photoinhibition prevention in the Japanese yew. It is possible that lower photosynthetic rate, lower NPQ depending on the xanthophyll cycle, and lower deposition of epicuticular wax results in seedling plants that are not adapted to high light conditions.


Asunto(s)
Plantones , Taxus , Humanos , Clorofila/fisiología , Fotosíntesis/fisiología , Plantones/metabolismo , Taxus/metabolismo , Xantófilas/metabolismo
12.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361982

RESUMEN

Jasmonates (JAs) are the most effective inducers for the biosynthesis of various secondary metabolites. Currently, jasmonate ZIM domain (JAZ) and its interactors, such as MYC2, constitute the main JA signal transduction cascade, and such a cascade fails to directly regulate all the taxol biosynthesis genes, especially the rate-limit gene, DBAT. Another JA signaling branch, JAV and WRKY, would probably fill the gap. Here, TcJAV3 was the closest VQ-motif-containing protein in Taxus chinensis to AtJAV1. Although TcJAV3 was overexpressed in AtJAV1 knockdown mutant, JAVRi17, the enhanced disease resistance to Botrytis cinerea caused by silencing AtJAV1 was completely recovered. The results indicated that TcJAV3 indeed transduced JA signal as AtJAV1. Subsequently, TcWRKY26 was screened out to physically interact with TcJAV3 by using a yeast two-hybrid system. Furthermore, bimolecular fluorescence complementation and luciferase complementary imaging also confirmed that TcJAV3 and TcWRKY26 could form a protein complex in vivo. Our previous reports showed that transient TcWRKY26 overexpression could remarkably increase DBAT expression. Yeast one-hybrid and luciferase activity assays revealed that TcWRKY26 could directly bind with the wa-box of the DBAT promoter to activate downstream reporter genes. All of these results indicated that TcWRKY26 acts as a direct regulator of DBAT, and the TcJAV3−TcWRKY26 complex is actually another JA signal transduction mode that effectively regulates taxol biosynthesis in Taxus. Our results revealed that JAV−WRKY complexes directly regulated DBAT gene in response to JA stimuli, providing a novel model for JA-regulated secondary metabolism. Moreover, JAV could also transduce JA signal and function non-redundantly with JAZ during the regulation of secondary metabolisms.


Asunto(s)
Proteínas de Arabidopsis , Taxus , Taxus/genética , Taxus/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Paclitaxel/metabolismo , Proteínas de Arabidopsis/genética
13.
Plant Cell Rep ; 41(12): 2363-2378, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36214871

RESUMEN

KEY MESSAGE: Paclitaxel synthesis in Taxus cells correlates with a cell-fate switch that leads to vacuoles of a glossy appearance and vermiform mitochondria. This switch depends on actin and apoplastic respiratory burst. Plant cell fermentation, the production of valuable products in plant cell culture, has great potential as sustainable alternative to the exploitation of natural resources for compounds of pharmaceutical interest. However, the success of this approach has remained limited, because the cellular aspects of metabolic competence are mostly unknown. The production of the anti-cancer alkaloid Paclitaxel has been, so far, the most successful case for this approach. In the current work, we map cellular aspects of alkaloid synthesis in cells of Taxus chinensis using a combination of live-cell imaging, quantitative physiology, and metabolite analysis. We show evidence that metabolic potency correlates with a differentiation event giving rise to cells with large vacuoles with a tonoplast that is of a glossy appearance, agglomerations of lipophilic compounds, and multivesicular bodies that fuse with the plasma membrane. Cellular features of these glossy cells are bundled actin, more numerous peroxisomes, and vermiform mitochondria. The incidence of glossy cells can be increased by aluminium ions, and this increase is significantly reduced by the actin inhibitor Latrunculin B, and by diphenylene iodonium, a specific inhibitor of the NADPH oxidase Respiratory burst oxidase Homologue (RboH). It is also reduced by the artificial auxin Picloram. This cellular fingerprint matches the implications of a model, where the differentiation into the glossy cell type is regulated by the actin-auxin oscillator that in plant cells acts as dynamic switch between growth and defence.


Asunto(s)
Taxus , Taxus/metabolismo , Ácidos Indolacéticos/metabolismo , Células Vegetales/metabolismo , Actinas/metabolismo , Fermentación , Paclitaxel/farmacología , Paclitaxel/metabolismo
14.
J Photochem Photobiol B ; 234: 112532, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35908357

RESUMEN

Taxus baccata L. cell culture is a promising commercial method for the production of taxanes with anti-cancer activities. In the present study, a T. baccata cell suspension culture was exposed to white light and 2-aminoindan-2-phosphonic acid (AIP), a phenylalanine ammonia lyase (PAL) inhibitor, and the effects of this treatment on cell growth, PAL activity, total phenol content (TPC), total flavonoid content (TFC), taxane production and the expression of some key taxane biosynthetic genes (DXS, GGPPS, T13OH, BAPT, DBTNBT) as well as the PAL were studied. Light reduced cell growth, whereas AIP slightly improved it. Light increased PAL activity up to 2.7-fold relative to darkness. The highest TPC (24.89 mg GAE/g DW) and TFC (66.94 mg RUE/g DW) were observed in cultures treated with light and AIP. Light treatment also resulted in the maximum content of total taxanes (154.78 µg/g DW), increasing extracellular paclitaxel and cephalomannin (3.3-fold) and intracellular 10-deacetyl paclitaxel (2.5-fold). Light significantly increased the expression level of PAL, DBTNBT, BAPT, and T13αOH genes, whereas it had no effect on the expression of DXS, a gene active at the beginning of the taxane biosynthetic pathway. AIP had no significant effect on the expression of the target genes. In conclusion, the light-induced activation of PAL transcription and altered expression of relevant biosynthetic genes reduced cell growth and increased the content of total phenolic compounds and taxanes. These findings can be applied to improve taxane production in controlled cultures and bioreactors.


Asunto(s)
Taxus , Hidrocarburos Aromáticos con Puentes , Técnicas de Cultivo de Célula , Flavonoides/metabolismo , Expresión Génica , Paclitaxel , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Taxoides , Taxus/genética , Taxus/metabolismo
15.
Cells ; 11(13)2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35805152

RESUMEN

Despite huge progress in biotechnological approaches to paclitaxel production, Taxus spp. in vitro culture productivity still remains a challenge. This could be solved by developing a new strategy engaging mechanisms of the primed defence response joined with subsequent elicitation treatment to circumvent limitations in paclitaxel biosynthesis. The hairy roots were primed by preincubation with ß-aminobutyric acid (BABA) for 24 h or 1 week, and then elicited with methyl jasmonate (MeJA) or a mixture of MeJA, sodium nitroprusside and L-phenylalanine (MIX). The effect of priming was evaluated on a molecular level by examination of the expression profiles of the four genes involved in paclitaxel biosynthesis, i.e., TXS (taxadiene synthase), BAPT (baccatin III: 3-amino, 3-phenylpropanoyltransferase), DBTNBT (3'-N-debenzoyl-2-deoxytaxol-N-benzoyltransferase) and PAM (phenylalanine aminomutase), as well as rolC (cytokinin-ß-glucosidase), originated from the T-DNA of Agrobacterium rhizogenes. The maximum paclitaxel yield was achieved in cultures primed with BABA for 1 week and elicited with MIX (3179.9 ± 212 µg/g dry weight), which corresponded to the highest expression levels of TXS and BAPT genes. Although BABA itself induced the investigated gene expression over control level, it was not translated into paclitaxel production. Nevertheless, preincubation with BABA essentially affected paclitaxel yield, and the duration of BABA pretreatment seemed to have the most pronounced impact on its productivity.


Asunto(s)
Taxus , Regulación de la Expresión Génica de las Plantas , Paclitaxel/farmacología , Fenilalanina/metabolismo , Taxus/genética , Taxus/metabolismo
16.
Sci Rep ; 12(1): 6282, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428370

RESUMEN

The ethanol extract from the wood of Taxus Yunnanensis (TY) induced apoptosis in all cancer cell lines tested, which was mainly due to activation of an extrinsic pathway in human colon cancer DLD-1 cells. The extrinsic pathway was activated by the upregulation of the expression levels of Fas and TRAIL/DR5, which led to the activation of caspase-8. Of note, the machinery of this increase in expression was promoted by the upregulation of MIR32a expression, which silenced MIR34a-targeting E2F3 transcription factor. Furthermore, ectopic expression of MIR32a or siR-E2F3 silencing E2F3 increased Fas and TRAIL/DR5 expression. Thus, the extract activated the extrinsic pathway through the MIR34a/E2F3 axis, resulting in the autocrine and paracrine release of TRAIL, and upregulated expression of death receptors Fas and DR5 in the treated DLD-1 cells, which were functionally validated by Fas immunocytochemistry, and using anti-Fas and anti-TRAIL antibodies, respectively. In vivo, TY showed significant anti-tumor effects on xenografted and syngeneic model mice. The extract may also aid in chemoprevention by selectively making marked tumor cells susceptible to the tumor immunosurveillance system.


Asunto(s)
Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Taxus , Animales , Apoptosis , Muerte Celular , Línea Celular Tumoral , Glicoproteínas de Membrana/metabolismo , Ratones , Extractos Vegetales/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Taxus/metabolismo , Madera/metabolismo
17.
Gene ; 823: 146384, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35248661

RESUMEN

UV-B radiation is a typical environmental stressor that can promote phytochemical accumulation in plants. Taxus species are highly appreciated due to the existence of bioactive taxoids (especially paclitaxel) and flavonoids. However, the effect of UV-B radiation on taxoid and flavonoid biosynthesis in Taxus cuspidata Sieb. et Zucc. is largely unknown. In the present work, the accumulation of taxoids and flavonoids in T. cuspidata plantlets was significantly induced by 12 and 24 h of UV-B radiation (3 W/m2), and a large number of significantly differentially expressed genes were obtained via transcriptomic analysis. The significant up-regulation of antioxidant enzyme- and flavonoid biosynthesis-related genes (phenylalanine ammonia lyase 1, chalcone synthase 2, flavonol synthase 1, and flavonoid 3', 5'-hydroxylase 2), suggested that UV-B might cause the oxidative stress thus promoting flavonoid accumulation in T. cuspidata. Moreover, the expression of some genes related to jasmonate metabolism and taxoid biosynthesis (taxadiene synthase, baccatin III-3-amino 3-phenylpropanoyltransferase 1, taxadiene-5α-hydroxylase, and ethylene response factors 15) was significantly activated, which indicated that UV-B might initiate jasmonate signaling pathway that contributed to taxoid enhancement in T. cuspidata. Additionally, the identification of some up-regulated genes involved in lignin biosynthesis pathway indicated that the lignification process in T. cuspidata might be stimulated for defense against UV-B radiation. Overall, our findings provided a better understanding of some potential key genes associated with flavonoid and taxoid biosynthesis in T. cuspidata exposed to UV-B radiation.


Asunto(s)
Vías Biosintéticas , Flavonoides/biosíntesis , Perfilación de la Expresión Génica/métodos , Tallos de la Planta/crecimiento & desarrollo , Taxoides/metabolismo , Taxus/genética , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Estrés Oxidativo , Proteínas de Plantas/genética , Tallos de la Planta/metabolismo , Tallos de la Planta/efectos de la radiación , RNA-Seq , Espectrometría de Masas en Tándem , Taxus/crecimiento & desarrollo , Taxus/metabolismo , Taxus/efectos de la radiación , Rayos Ultravioleta/efectos adversos
18.
Plant Cell Rep ; 41(4): 853-871, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34984531

RESUMEN

KEY MESSAGE: Our paper describes the potential roles of lipid droplets of Taxus media cell suspension in the biosynthesis and secretion of paclitaxel and, therefore, highlights their involvement in improving its production. Paclitaxel (PTX) is a highly potent anticancer drug that is mainly produced using Taxus sp. cell suspension cultures. The main purpose of the current study is to characterize cellular LDs from T. media cell suspension with a particular focus on the biological connection of their associated proteins, the caleosins (CLOs), with the biosynthesis and secretion of PTX. A pure LD fraction obtained from T. media cells and characterized in terms of their proteome. Interestingly, the cellular LD in T. media sequester the PTX. This was confirmed in vitro, where about 96% of PTX (C0PTX,aq [mg L-1]) in the aqueous solution was partitioned into the isolated LDs. Furthermore, silencing of CLO-encoding genes in the T. media cells led to a net decrease in the number and size of LDs. This coincided with a significant reduction in expression levels of TXS, DBAT and DBTNBT, key genes in the PTX biosynthesis pathway. Subsequently, the biosynthesis of PTX was declined in cell culture. In contrast, treatment of cells with 13-hydroperoxide C18:3, a substrate of the peroxygenase activity, induced the expression of CLOs, and, therefore, the accumulation of cellular LDs in the T. media cells cultures, thus increasing the PTX secretion. The accumulation of stable LDs is critically important for effective secretion of PTX. This is modulated by the expression of caleosins, a class of LD-associated proteins with a dual role conferring the structural stability of LDs as well as regulating lipidic bioactive metabolites via their enzymatic activity, thus enhancing the biosynthesis of PTX.


Asunto(s)
Antineoplásicos , Taxus , Regulación de la Expresión Génica de las Plantas , Gotas Lipídicas/metabolismo , Paclitaxel/metabolismo , Paclitaxel/farmacología , Taxus/genética , Taxus/metabolismo
19.
BMC Plant Biol ; 22(1): 12, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34979929

RESUMEN

BACKGROUND: Taxol from Taxus species is a precious drug used for the treatment of cancer and can effectively inhibit the proliferation of cancer cells. However, the growth of Taxus plants is very slow and the content of taxol is quite low. Therefore, it is of great significance to improve the yield of taxol by modern biotechnology without destroying the wild forest resources. Endophytic fungus which symbiosis with their host plants can promote the growth and secondary metabolism of medicinal plants. RESULTS: Here, an endophytic fungus KL27 was isolated from T. chinensis, and identified as Pseudodidymocyrtis lobariellae. The fermentation broth of KL27 (KL27-FB) could significantly promote the accumulation of taxol in needles of T. chinensis, reaching 0.361 ± 0.082 mg/g·DW (dry weight) at 7 days after KL27-FB treatment, which is 3.26-fold increase as compared to the control. The RNA-seq and qRT-PCR showed that KL27-FB could significantly increase the expression of key genes involved in the upstream pathway of terpene synthesis (such as DXS and DXR) and those in the taxol biosynthesis pathway (such as GGPPS, TS, T5OH, TAT, T10OH, T14OH, T2OH, TBT, DBAT and PAM), especially at the early stage of the stimulation. Moreover, the activation of jasmonic acid (JA) biosynthesis and JA signal transduction, and its crosstalk with other hormones, such as gibberellin acid (GA), ethylene (ET) and salicylic acid (SA), explained the elevation of most of the differential expressed genes related to taxol biosynthesis pathway. Moreover, TF (transcriptional factor)-encoding genes, including MYBs, ethylene-responsive transcription factors (ERFs) and basic/helix-loop-helix (bHLH), were detected as differential expressed genes after KL27-FB treatment, further suggested that the regulation of hormone signaling on genes of taxol biosynthesis was mediated by TFs. CONCLUSIONS: Our results indicated that fermentation broth of endophytic fungus KL27-FB could effectively enhance the accumulation of taxol in T. chinensis needles by regulating the phytohormone metabolism and signal transduction and further up-regulating the expression of multiple key genes involved in taxol biosynthesis. This study provides new insight into the regulatory mechanism of how endophytic fungus promotes the production and accumulation of taxol in Taxus sp.


Asunto(s)
Ascomicetos/fisiología , Endófitos/fisiología , Regulación de la Expresión Génica de las Plantas , Paclitaxel/biosíntesis , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Taxus/metabolismo , Genes de Plantas , Paclitaxel/metabolismo , Taxus/microbiología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...